When training does your GPU Utilization % go up. Also what model size are you using? I normally use model=yolov8s.yaml. Below is what I use to start the trainingIt is python ultralytics. I did bump the image size to 800 since my images are 1280x720 and most of my substreams are the same resolution as well. My batch size is 22 which uses around 22GB of RAM.
Ultralytics YOLOv8.2.40 Python-3.12.6 torch-2.4.1+cu121 CUDA:0 (NVIDIA GeForce RTX 3090, 24575MiB)
engine\trainer: task=detect, mode=train, model=models/ipcamv8.yaml, data=data.yaml, epochs=10, time=None, patience=100, batch=22, imgsz=800, save=True, save_period=-1, cache=False, device=0, workers=8, project=None, name=train2, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=None, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\detect\train2
....
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
1/10 21.5G 2.565 3.498 2.907 68 800: 100%|██████████| 1865/1865 [19:40<00:00, 1.58it/s]
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 75/75 [01:26<00:00, 1.15s/it]
all 3288 15101 0.15 0.114 0.0875 0.0397
yolo train data=plate.yaml model=yolov8s.yaml epochs=300 imgsz=640 cache=True batch=-1 patience=10 workers=8
Last edited: