Futaba
Pulling my weight
- Nov 13, 2015
- 227
- 168
If you want to give it a try, you need to install CUDA & cuDNN and follow the Local Setup in the below link. I am using a RTX3060 ti for local training.
GitHub - johnolafenwa/deepstack-trainer: Custom Object Detection Training for DeepStack
Custom Object Detection Training for DeepStack. Contribute to johnolafenwa/deepstack-trainer development by creating an account on GitHub.github.com
Congrats for finding a good deal on a 3090!
I spent some time to get training set up. I have verified that pytorch is installed correctly.
Code:
Python 3.10.4 (tags/v3.10.4:9d38120, Mar 23 2022, 23:13:41) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> x = torch.rand(5, 3)
>>> print(x)
tensor([[0.6296, 0.4324, 0.1697],
[0.9212, 0.9805, 0.0763],
[0.6045, 0.9442, 0.6604],
[0.1562, 0.1943, 0.2128],
[0.8101, 0.6730, 0.9656]])
>>> torch.cuda.is_available()
True
I followed the instructions in tutorial.ipynb and I got:
Code:
>>> from IPython.display import Image, clear_output
>>> clear_output()
>>> print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_properties(0) if torch.cuda.is_available() else 'CPU'))
Setup complete. Using torch 1.11.0+cu113 _CudaDeviceProperties(name='NVIDIA GeForce RTX 3090', major=8, minor=6, total_memory=24575MB, multi_processor_count=82)
>>>
But haven't been successfully in running detect.py.
Should I clone yolov5 inside \deepstack-trainer or at the same level as \deepstack-trainer?
Where should I run this?
Code:
!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images/
Image(filename='runs/detect/exp/zidane.jpg', width=600)
I get errors if I run "python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images/" in cmd.exe.